

Implementación y validación de un modelo climático regional para Bolivia

Julio, 2009

Christian Seiler Fundación Amigos de la Naturaleza

Contenido

Lis	ta de fig	guras2
Lis	ta de ta	blas3
Ab	reviacio	ones3
1	Intro	ducción4
	1.1	Motivación4
	1.2	Modelos Climáticos
	1.3	Circulación Atmosférica de América del Sur5
2	Meto	odología6
	2.1	Diseño experimental
	2.2	Diseño de validación6
	2.3	Área de estudio7
	2.4	Descripción del modelo7
	2.5	Data
	2.5.1	Lateral Boundary Conditions8
	2.5.2	Observaciones meteorológicas8
	2.5.3	Interpolación espacial de observaciones meteorológicas8
	2.5.4	Extracción de datos9
_		
3	Resu	ltados
3	Resu 3.1	ltados
3	Resu 3.1 3.1.1	Itados
3	Resu 3.1 3.1.1 3.1.2	Itados
3	Resu 3.1 3.1.1 3.1.2 3.1.3	Itados
3	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15
3	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15
3	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15
3	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15 isis de error 20
4	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál 4.1	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Sisis de error 20 Datos de observación 20
4	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál 4.1 4.2	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15 isis de error 20 Datos de observación 20 Lateral Boundary Conditions 20
4	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál 4.1 4.2 4.3	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15 isis de error 20 Datos de observación 20 PRECIS 20
4	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál 4.1 4.2 4.3 Conc	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15 isis de error 20 Datos de observación 20 Lateral Boundary Conditions 20 PRECIS 20 Iusiones y discusión 20
3 4 5 Re	Resu 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 Anál 4.1 4.2 4.3 Conc ferencia	Itados 10 Clima histórico (1961-1990) 10 Análisis grid-a-grid 10 Comparación de GCM, RCM y observaciones 12 Análisis punto-a-punto 13 Cambio Climático 15 Tendencias observadas 15 Tendencias modeladas 15 Tendencias modeladas 15 Jatos de observación 20 Datos de observación 20 Itateral Boundary Conditions 20 PRECIS 20 Iusiones y discusión 21 as 23

LISTA DE FIGURAS

Experimento's experimento's provided in the trend of trend of the trend of trend of trend of the trend of tren	Figura 1 Temperatura (izq.) y precipitación (der.) mensual modelada y observada. Los modelos incluyen experimentos de PRECIS con ECHAMA, HedAM3P, HedCM3O y EPA40 como insumo (levelanda -
Figura 2 Temperatura (izq.) y precipitación (der.) mensual modelada y observada. Los modelos incluyen Figura 2 Temperatura (izq.) y precipitación (der.) mensual modelada y observada. Los modelos incluyen Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) 18 Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano) 19 Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2) 25	Tierres Beieg sub Andes - Vertiente Orientel y Velles Interendings, highlands - Altinland
Figura 2 reinperatura (rd,) y precipitación (der,) inensital inductada y observada postrovada in trobyeni experimentos de PRECIS con ECHAM4 de 50km y 25km resolución y el GCM-ECHAM4 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Internandinos, highlands = Altiplano). 13 Figura 3 Temperatura (izquierda) y precipitación (derecha) modelada versus observada en la localización de las estaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Internandinos, highlands = Altiplano).	Figure 2 Temperature (ize) y precipitación (der) mensuel medalede y observada. Los modelos incluyen
Experimentos de FRECIS con ECHAM4 de SORIN y 23MI resolución y en OCM-ECHAM4 (<i>lowindus</i>) Figura 3 Temperatura (izquierda) y precipitación (derecha) modelada versus observada en la localización de las estaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 15 Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 18 Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 19 Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2). 20 Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM)) 25 Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in lowlands, sub-Andes and highlands. 25 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2). 27	rigura 2 Temperatura (12q.) y precipitación (del.) mensual moderada y observada. Los moderos incluyen experimentos de DEECIS con ECUAMA de 50km y 25km resolución y el CCM ECUAMA (levelanda -
Fireras Bajas, sub-Andes = vertence Oriental y Varies Internations, Inginations = Attipiano). 15 Figura 3 Temperatura (izquierda) y precipitación (derecha) modelada versus observada en la localización de la setaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano).	Experimentos de PRECIS con ECHAM4 de Sokin y 25kin resolución y el GCM-ECHAM4 (<i>lowianas</i> =
Figura 3 Temperatura (rzquierda) y precipitación (derecha) modelada versus observada en la localización de la sestaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). Precipitación promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2). Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM)) 25 Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in lowlands, sub-Andes and highlands. 25 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2). 28 Figura 12 Chang	Tierras Bajas, <i>sub-Andes</i> = vertiente Oriental y valies interandinos, <i>highlands</i> = Altiplano)
ide las estaciones meteorologicas. La linea muestra donde el modelo es igual a las observaciones (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). 18 Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano). 19 Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2). 20 Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM)) 25 Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (bolow) 26 (below) 26 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 27 Figura 11 Change of mean monthly air t	Figura 3 Temperatura (izquierda) y precipitación (derecha) modelada versus observada en la localización
<i>lowlands</i> = 11erras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 15 Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de 15 RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 18 Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano). 19 Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2). 20 Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM)) 25 Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below) 26 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2). 27 Figura 11 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2). 29 Figura 13 Change of mean monthly precipitation (%)	de las estaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones
15 Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano)	(lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano).
Figura 4Temperatura promedio mensual (rzq.) y cambio de temperatura promedio mensual (derecha) deRCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes =Vertiente Oriental y Valles Interandinos, highlands = Altiplano)	
RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano)	Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de
1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes =Vertiente Oriental y Valles Interandinos, highlands = Altiplano).18Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha)18de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-20302001-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental yValles Interandinos, highlands = Altiplano).19Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incrementoprecipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2).20Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM))25Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in26Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-199026Figura 11 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-199028Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-199029Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-199029Figura 14 Temperature (left) and precipitation (right) plotted against altitude30Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation31	RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en
Vertiente Oriental y Valles Interandinos, highlands = Altiplano)	1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = $\frac{1}{2}$
Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano)	Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano)18
de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 and B2 (lowlands = Tierras Bajas, sub-Andes = Vertiente Oriental y Valles Interandinos, highlands = Altiplano)	Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha)
and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y Valles Interandinos, <i>highlands</i> = Altiplano)	de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030
Valles Interandinos, <i>highlands</i> = Altiplano)	and 2071-2100 para los SRES A2 and B2 (<i>lowlands</i> = Tierras Bajas, <i>sub-Andes</i> = Vertiente Oriental y
Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2)	Valles Interandinos, <i>highlands</i> = Altiplano)19
precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2)	Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento
Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM)) 25 Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in lowlands, sub-Andes and highlands. 25 Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below) 26 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 27 Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation 31	precipitación (der.) para 2001-2030 (arriba) and 2071-2100 (abajo) (ECHAM4, A2)20
Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in lowlands, sub-Andes and highlands. 25 Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below) 26 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 27 Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation 31	Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM))25
Iowlands, sub-Andes and highlands.25Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below)26Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2)27Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2)28Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2)28Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2)29Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2)30Figura 14 Temperature (left) and precipitation (right) plotted against altitude31Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation31	Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in
Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below) 26 Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 27 Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2) 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation 31	lowlands, sub-Andes and highlands25
(below)26Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990(ECHAM4 A2)27Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990(ECHAM4 A2)28Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)29Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)29Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)30Figura 14 Temperature (left) and precipitation (right) plotted against altitude31Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation
Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990(ECHAM4 A2)27Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990(ECHAM4 A2)28Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)29Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)29Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)30Figura 14 Temperature (left) and precipitation (right) plotted against altitude31Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	(below)26
ECHAM4 A2) 27 Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation 31	Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990
Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990(ECHAM4 A2)Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990(ECHAM4 A2)(ECHAM4 A2)(ECHAM	(ECHAM4 A2)27
ECHAM4 A2) 28 Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 29 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990
Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation 31	(ECHAM4 A2)
ECHAM4 A2) 29 Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990
Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	(ECHAM4 A2)
(ECHAM4 A2) 30 Figura 14 Temperature (left) and precipitation (right) plotted against altitude 31 Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990
Figura 14 Temperature (left) and precipitation (right) plotted against altitude	(ECHAM4 A2)
Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation	Figura 14 Temperature (left) and precipitation (right) plotted against altitude
	Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation
(<i>P</i>) (right)	(P) (right)
Figura 16 Trend analysis potential air temperature (left) and precipitation (right) ($x = \text{east}, y = \text{north}, z = \text{north}, $	Figura 16 Trend analysis potential air temperature (left) and precipitation (right) ($x = \text{east}, y = \text{north}, z = \text{north}$
θ (left) $z = P$ (right), rotation angle = 30° and 50°)	θ (left) $z = P$ (right), rotation angle = 30° and 50°)
Figura 17 Spatial correlation (left) and RMS (right) of temperature	Figura 17 Spatial correlation (left) and RMS (right) of temperature
Figura 18 Spatial correlation (left) and RMS (right) of precipitation	Figure 18 Spatial correlation (left) and RMS (right) of precipitation 33

LISTA DE TABLAS

Tabla 1 Diseño experimental 6
Tabla 2 Diseño de validación 7
Tabla 3 RMS promedio anual y correlación espacial de temperatura promedia
Tabla 4 RMS promedio anual y correlación espacial de precipitación mensual
Tabla 5 Resumen del testo-t ($\alpha = 0.05$)14
Tabla 6 Cambio de temperatura promedia, desviación estándar espacial y temporal de RCM-ECHAM4
(25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 2001-2030 y 2071-2100 para SRES A2 y
B217
Tabla 7 Cambio de precipitación promedia, coeficiente de variación (cv) espacial y temporal de RCM-
ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 2001-2030 y 2071-2100 para
SRES A2 y B217
Tabla 8 Examples of Regional Climate Modela applications in South America
Tabla 9 Characteristics of three SRES (A1B, A2, B2) (Nakicenovic et al., 2000) 36
Tabla 10 Interpolation models 36
Tabla 11 Interpolation models for temperature using monthly data 37
Tabla 12 Interpolation model for precipitation using monthly data 37
Tabla 13 Comparison of the RCM-ECHAM4 with observations at the locations of meteorological
stations
Tabla 14 RCM Temperature and Precipitation bias of 31 applications worldwide

ABREVIACIONES

DEM	Modelo de Elevación Digital (Digital Elevation Model)
ECHAM4	Global Circulation Model (Max Planck)
ECMWF	Centre for Medium-Range Weather Forecasts
ENSO	El Niño/Northern Oscilliation
ERA40	Re-analysis of meteorological observations
FAN-Bolivia	Fundación Amigos de la Naturaleza
FSUNRSM	Florida State Nested Regional Spectral Model
GCM	Modelo de Circulación Global (Global Circulation Model)
GISSRCM	GISS Regional Climate Model
HadAM3P	Global Circulation Model (Hadley Centre)
HadCM3Q	Global Circulation Model (Hadley Centre)
ITCZ	Intertropical Convergence Zone
LBC	Lateral Boundary Condition
MOSES	Met Office Surface Exchange Scheme
OBS	Observaciones
PRECIS	Providing Regional Climates for Impact Studies
RCA3	Rossby Centre Regional Climate Model
RCM	Modelo Climático Regional (Regional Climate Model)
RegCM2	IRI Regional Climate Model
RMS	Root Mean Square Error
RSM	ECPS Regional Spectral Model
SACZ	South Atlantic Convergence Zone
SAMS	South American Monsoon System
SENAMHI	Servicio Nacional de Meteorología e Hidrología
SPCZ	South Pacific Convergence Zone
SRES	Special Report on Emission Scenarios
SST	Sea Surface Temperature

Implementación y validación de un RCM para Bolivia, Julio 2009, Christian Seiler, FAN-Bolivia

Resumen

Se implementa y valida un modelo climático regional para Bolivia. Se compara la temperatura promedio y la precipitación mensual con observaciones meteorológicas. Estas observaciones y modelaciones muestran un ciclo estacional y una correlación espacial. Con respecto a la temperatura, el modelo estima valores correctos en las Tierras Bajas, pero subestima la temperatura en la Vertiente Oriental y Valles Interandinos (en adelante sólo Vertiente Oriental) En cuanto a la precipitación, el modelo estima valores significativamente y el Altiplano. distintos en las Tierras Bajas y sobreestima la precipitación en la Vertiente Oriental y en el Altiplano. El clima futuro mantiene la estructura básica del ciclo estacional. Sin embargo, la temperatura futura aumenta en toda Bolivia con incrementos más extremos en el Altiplano y la Amazonia, con un incremento de 1-2°C hasta 2030 y de 5-6°C hasta 2100, comparado con valores promedio entre 1961-1990. Los cambios en la precipitación son más complejos todavía, las Tierras Bajas muestran un ciclo de precipitación más intenso, con más precipitación durante la época lluviosa y menos precipitación durante la época seca (DEF y JJA respectivamente). Los cambios relativos máximos incluyen +53% y -36% hasta 2100. Este ciclo intensificado es también visible en la Vertiente Oriental donde un decremento más extremo ocurre en Agosto. Este patrón se revierte en el Altiplano en el año 2100 con incrementos y decrementos más extremos en la época seca y lluviosa respectivamente. Por la baja exactitud de la interpolación espacial de precipitación observada, se recomienda mejorar este dato con imágenes satelitales, además se necesita una revisión de la aplicabilidad del modelo para los Andes. El autor recomienda analizar la altitud utilizada por el modelo y la parametrización de precipitación. Si una mejora no es factible, se recomienda la aplicación de un modelo alternativo.

Palabras claves: modelaje climático regional; *dynamical downscaling*; validación estadística; escenarios de cambio climático; climatología de la superficie; Bolivia

1 Introducción

1.1 Motivación

La Fundación Amigos de la Naturaleza (FAN-Bolivia) y el Gobierno Departamental de Santa Cruz ejecutan conjuntamente un proyecto piloto para la adaptación al Cambio Climático, para explorar posibles impactos. El proyecto demanda proyecciones climáticas validadas y con alta resolución espacial. Él presente informe documenta la implementación, análisis y validación de un modelo climático regional (RCM) con objetivos de predicciones climáticas. Los siguientes capítulos incluyen una revisión de modelos climáticos, la climatología de América del Sur, y la implementación de análisis y validación de un RCM para el territorio de Bolivia. Se evalúa el RCM con respecto a la temperatura y la precipitación, se comparan las tendencias modeladas con tendencias observadas, se discuten los resultados y se propone una investigación a futuro.

1.2 Modelos Climáticos

Los modelos de circulación global (GCM) son representaciones matemáticas del clima global. Estos GCM vinculan procesos de la atmósfera, hidrósfera, criósfera y biósfera y presentan un sistema extraordinariamente complejo y no lineal. Debido a las restricciones del rendimiento, los procesos son simplificados y presentados en una escala espacial gruesa de aproximadamente 250km. Para incrementar la resolución espacial, se aplica un *statistical* o *dynamical downscaling*. El segundo implica la aplicación de un RCM y permite una resolución espacial alta de pocos kilómetros. Existen varias recientes aplicaciones de RCM para América del Sur que investigan procesos o predicciones climáticas. Entre otras están RSM, FSUNRSM, GISSRCM and RegCM2 (Roads *et al.*, 2003), RegCM3 (Seth *et al.*, 2007), REMO (Silvestri *et al.*, 2009), RCA3 (Sörrensson *et al.*, 2009) y PRECIS (Urrutia *et al.*, 2009; Marengo *et al.*, 2009) (Tabla 8). Sólo los últimos dos modelos incluyen predicciones de cambio climático. Los autores encuentran patrones razonables de temperatura y precipitación; sin embargo, existen errores de todas formas. Los modelos muestran sobreestimaciones de precipitación en los Andes.

Los errores típicos entre modelaciones y observaciones estacionales en Bolivia incluyen -2°C hasta +4°C y -100% hasta +100% respectivamente (Silvestri *et al.*, 2009). Las predicciones futuras muestran un incremento de temperatura e intensificación del ciclo hidrológico. El incremento de temperatura más pronunciada existe en partes de la Amazonia, especialmente al NE. Este incremento está acompañado de un decremento de precipitación, una tendencia similar se encuentra en el Altiplano. A pesar de la existencia de escenarios regionales, se implementa un RCM explícitamente para Bolivia, eso permite el acceso completo a los datos, un incremento de la resolución espacial a 0.22 grados (aproximadamente 25km) y la oportunidad de investigar el efecto de diferentes *lateral boundary conditions* (capítulo 2.5.1). Además, las futuras investigaciones requieren el acceso completo a un RCM para analizar interacciones entre clima, vegetación y deforestación.

1.3 Circulación Atmosférica de América del Sur

Los componentes claves de la climatología de América del Sur incluyen (*i*) la cordillera de los Andes y las sierras de Brasil, (*ii*) las zonas de alta presión en el SE-Pacífico y el SO-Atlántico, (*iii*) la Corriente de Humboldt y (*iv*) las tres principales zonas de precipitación *Intertropical Convergence Zone* (ITCZ), *South Atlantic Convergence Zone* (SACZ) and *South Pacific Convergence Zone* (SPCZ) (Garreaud *et al.*, 2008).

Zonas de precipitación

El ITCZ es una cadena de zonas de baja presión cerca del ecuador, aquí los alisios del hemisférico norte y sur convergen produciendo convección y por lo tanto precipitación. La posición del ITCZ responde al desfase latitudinal del calentamiento del sol, a la distribución de la tierra y el mar, la topografía continental y la temperatura de la superficie de los mares. El desfase latitudinal de la ITCZ causa el ciclo estacional de precipitación con más precipitación durante JJA en el norte y DEF en el sur. La extensión extrema del ITCZ llega desde América Central hasta Argentina Central (Veblen *et al.*, 2007), esta migración de precipitaciones está recientemente referida como *South American Monsoon System* (SAMS) (Vera *et al.*, 2006). Otro componente del SAMS forma la segunda zona principal de precipitación SACZ, SACZ es una zona de precipitación permanente, expandiéndose desde la zona central del continente hasta el SO-Atlántico. La tercera zona de precipitación principal SPCZ cubre el continente desde su extremo sur hasta 40°S. Aquí existe un *low-level westerly flow* durante todo el año, causando mucha precipitación en la vertiente occidental y condiciones secas en el lado este de los Andes (Garreaud *et al.*, 2008).

Zonas de viento

Impulsado por la zona de alta presión en el SO-Atlántico, los alisios entran al continente durante todo el año y vuelven al sur cuándo convergen con los Andes. Durante el verano austral (DEF), una zona de presión baja forma sobre el Chaco ("*Chaco low*") (25°S), forzando los alisios a transportar humedad desde la Amazonia a los llanos sub-tropicales (35°S) por un *low-level jet*. Durante el mismo tiempo forma una zona de presión alta en altos niveles sobre el Altiplano ("*Bolivian high*"), favoreciendo el transporte de aire húmedo continental (Garreaud *et al.*, 2008). Otro *low-level jet* de América del Sur existe por la costa oeste sub-tropical. Este viento está forzado por la zona de presión alta en el SE-Pacífico y transporta masas de aire desde el sur hasta al norte (Garreaud, 2005).

Zonas áridas

América del Sur contiene tres regiones secas mayores, las cuales son (*i*) el desierto costal de Perú y Chile, (*ii*) NE-Brasil y (*iii*) SE-Argentina. El primero está causado por aire descendiendo de la zona de presión alta en el SE-Pacífico. Adicionalmente, la corriente fría de Humboldt causa una inversión termal con aire frío cerca del nivel del mar y aire caliente más encima, causando niebla y nubes de estratos, pero no precipitación. La aridez del NE-Brasil es la consecuencia de aire descendiendo forzado por convección sobre la Amazonia (Hewitt y Jackson, 2003) o sobre el Atlántico (Garreaud *et al.*, 2008). La zona de aridez en SE-Argentina está mayormente causada por el efecto de sotavento de los Andes.

El Niño

El Niño/Southern Oscillation (ENSO) es la fuente mayor de variabilidad climática interanual sobre grandes partes de América del Sur. En la mayoría de los años cuando El Niño no ocurre, alisios empujan las aguas calientes de la superficie del Pacífico al oeste, causando una capa de aguas calientes más profunda en el oeste que en el este del Pacífico. Las aguas calientes en el oeste están asociadas con zonas de presión bajas, promoviendo convección y por consiguiente, precipitación en Indonesia. Las aguas frías en el este del Pacífico son asociadas con zonas de presión alta y por lo tanto, poca precipitación. El Niño es el evento en el que las zonas de presión mencionadas y los alisios pierden su fuerza causando que las aguas calientes del Pacífico al moverse por el Este impidan la ascensión de las aguas frías de las costas de Ecuador y Perú (Chapin et al., 2002). Los impactos incluyen (i) decremento de precipitación en el Norte de América del Sur, (ii) incremento de precipitación en el SE de América del Sur, (iii) condiciones de inundaciones en Ecuador y norte de Perú, (iv) menos acumulación de nieve en los glaciares de los Andes y (v) sequía en NE-Brasil. Con respecto a Bolivia, El Niño está asociado con menos precipitación en el Altiplano, en la Vertiente Oriental y el Chaco, y con más precipitación en los llanos del Nord-Este (Ibisch y Merida, 2003). Eventos recientes de ENSO ocurrieron durante 2006/07, 2004/05, 2002/03, 1997/98, 1993/94, 1991/92 and 1986/87.

2 Metodología

2.1 Diseño experimental

Se implementa el Modelo Climático Regional (RCM) PRECIS (Providing Regional Climates for Impact Studies, Jones *et al.*, 2004) para Bolivia para los años 1961-1990, 2001-2030 y 2071-2100. Las simulaciones cubren tres escenarios de emisiones (SRES, Tabla 9) y cuatro *lateral boundary conditions* (LBC, capítulo 2.5.1). Se corre PRECIS para las dos resoluciones espaciales 0.44 y 0.22 grados, las cuales equivalen aproximadamente a 50km y 25km respectivamente. La Tabla 1 resume el diseño del experimento.

Tabla I Disello	experimental							
	1961-1990	2001-2030				2071-2100		
LBC	Línea de base	A2	B2	A1B	_	A2	B2	A1B
ECHAM4	х	х	х	-		х	х	-
HadAM3P	x	-	-	-		х	х	-
HadCM3Q	x	-	-	х		-	-	х
ERA40	х	-	-	-		-	-	-

Tabla 1 Diseño experimental

2.2 Diseño de validación

La validación consiste en cuatro comparaciones separadas, donde se compara (*a*) el GCM con observaciones, (*b*) tres RCM con observaciones, (*c*) ERA40 (capítulo 2.5.1) con observaciones y (*d*) el RCM más realista con su GCM correspondiente. Las comparaciones corresponden a los años 1961-1990. El autor compara el promedio de 30 años de temperatura y precipitación con respecto al promedio, *root mean square error* (RMS, Ec. 1) y correlación espacial (*r*), se aplica el *testo-t* (Ec. 2) de significancia para determinar si dos promedios son significativamente diferentes o no. Las diferencias entre simulaciones y observaciones son inevitables. Existen tres fuentes de errores potenciales, que son los datos de observación, *lateral boundary conditions* (LBC, capítulo 2.5.1) y/o PRECIS. Para obtener transparencia sobre la calidad de datos observados, el autor no usa climatología global de la superficie como CRU (New *et al.*, 1999), pero realiza su propia interpolación espacial de mediciones meteorológicas utilizando diferentes técnicas de interpolación como *kriging*. Se evalúa la calidad de la interpolación con *general cross validation* (New *et al.*, 1999), para erradicar el error introducido por la interpolación

espacial, el autor adicionalmente compara variables modeladas y observadas para las localizaciones de estaciones meteorológicas. Además, se analiza si las diferencias entre observaciones y simulaciones están causadas por PRECIS o LBC en la manera que PRECIS está forzado por ERA40. ERA40 presenta datos de un re-análisis y cumple la función de la identificación de la fuente de error. Si PRECIS-ERA40 muestra los mismos errores como el PRECIS con otra LBC, el error no es causado por el LBC pero sí por PRECIS. Al contrario, si el error desaparece, la fuente del error es el LBC y no PRECIS (Taylor *et al.*, 2001). La Tabla 2 resume el diseño de la validación. El RMS es obtenido según Stull (2000),

donde a es la variable modelada y b la variable observada.

Se aplica el *two-sided t-test* para la comparación de dos promedios de comprobaciones arbitrarias independientes según Köhler *et al.*, (2002),

donde n_i es el tamaño de las comprobaciones arbitrarias y s_x^2 and s_y^2 son las varianzas de las variables observadas (x) y modeladas (y). Si $t_{Vers} \le t_{Tab}$, ambos datos no son significativamente diferentes. Se obtiene t_{Tab} de una tabla de t. Se elige un α de 0.05.

ID	Compara	con	lapso	Objetivo
а	GCM	observación	1961-1990	Potencia del GCM
b	RCM LBC	observación	1961-1990	Potencia del RCM
с	RCM ERA	observación	1961-1990	Análisis de error
d	RCM LBC	GCM	1961-1990	Consistencia entre RCM y GCM

Tabla 2 Diseño de validación

2.3 Área de estudio

El RCM está aplicado al tamaño rectangular de Bolivia, cubriendo aproximadamente 2,651,740 km² (1,612km x 1,640km) de terreno heterogéneo. Bolivia cubre el 10% de los bosques tropicales de América Sur y se encuentra entre los 15 países más biodiversos del mundo (Molina *et al.*, 2009), su territorio mide más de un millón de kilómetros cuadrados (dos veces España) con altitudes desde 70 hasta 6,500 msnm (Figura 7). Bolivia contiene 12 ecoregiones contrastantes, incluyendo bosques Amazónicos, Yungas, bosques secos, humedales, cerrados y puna (Ibisch y Mérida, 2003). La distribución de especies responde a una gradiente altitudinal por la cordillera de los Andes y latitudinal con un incremento de precipitación al norte. (Killeen *et al.*, 2008). Este análisis reduce la diversidad extrema, dividiendo el país en sus tres regiones mayores, que son (*a*) las Tierras Bajas (<800msnm), (*b*) la Vertiente Oriental y Valles Interandinos (800-3,200 msnm) y (*c*) el Altiplano (>3,200 msnm) (Ibisch and Mérida, 2003) (Figura 8).

2.4 Descripción del modelo

PRECIS consiste en un modelo atmosférico vinculado con un modelo de la superficie terrestre, representando flujos dinámicos, el ciclo atmosférico sulfúrico, nubes, precipitación, radiación, superficie terrestre y suelos. El modelo atmosférico está basado en el componente atmosférico del GCM HadCM3 (Gordon *et al.*, 2000) mientras el modelo de la superficie terrestre sale del MOSES (Met Office Surface Exchange Scheme, Cox *et al.*, 1999). Para correr, PRECIS demanda variables pronóstico, las cuales contienen información sobre dinámicas atmosféricas al

margen del área geográfica de la modelación. Los variables pronóstico consisten en presión atmosférica, viento, temperatura y humedad. Adicionalmente se usan cinco grupos sulfúricos para simular la distribución espacial de aerosoles sulfúricos. Aplicando parametrización, PRECIS usa variables pronóstico para derivar variables de diagnóstico. Estas últimas consisten en información sobre nubes, precipitación, aerosoles atmosféricos, procesos del *boundary layer*, procesos de la superficie terrestre y *gravety wave drag*. Las variables pronóstico se obtienen del LBC del margen del área de modelaje. La precipitación está modelada como circulación regional y como convección, la formación de nubes está calculada del perfil atmosférico modelado de temperatura, presión, humedad y concentración de aerosoles, la conversión de agua de nubes a precipitación depende de la cantidad de agua presente y precipitación cayendo dentro de un *grid box* desde arriba, causando un *seeder-feeder enhancement*. Una descripción completa de PRECIS y sus parametrizaciones están documentadas en Jones *et al.*, (2004).

2.5 Data

2.5.1 Lateral Boundary Conditions

Los datos de insumo son los *Lateral Boundary Conditions* (LBC) del margen del área de modelación, se utilizan 3 LBC del GCM ECHAM4 (Roeckner *et al.*, 1996), HadAM3P, HadCM3Q (Gordon *et al.*, 2000), y la base de datos de re-análisis ERA40 (Uppala *et al.*, 2005). El primer GCM está generado por el Instituto de Max Planck en Alemania y el último del Met Office Hadley Centre del Reino Unido. ERA40 es un re-análisis de observaciones meteorológicas desde Septiembre de 1957 hasta Agosto del 2002 y está producido por el "European Centre for Medium-Range Weather Forecasts" (ECMWF). ERA40 es un insumo, pero es utilizado por motivos de validación.

2.5.2 Observaciones meteorológicas

Las observaciones meteorológicas utilizadas por motivos de validación se obtienen del Servicio Nacional de Meteorología e Hidrología (SENAMHI), estas observaciones presentan 30 años de promedios válidos para el lapso 1961-1990. Los datos incluyen temperatura del aire absoluta de 1.5m sobre la superficie medida de 54 y precipitación mensual acumulada medida de 57 estaciones (Figura 8).

2.5.3 Interpolación espacial de observaciones meteorológicas

Se interpolan espacialmente observaciones meteorológicas aplicando modelos geo-estadísticos, esto implica (*a*) explorar datos con respecto a correlaciones, distribución y tendencias espaciales, (*b*) cuadrar diferentes modelos de interpolación, (*c*) validar los diferentes modelos utilizando *cross-validation* y (*d*) comparar estadísticamente la calidad de los modelos de interpolación.

Temperatura

,

Se calcula un *local lapse rate* (Γ) de una función lineal, la cual expresa una temperatura promedio anual de 30 años como función de altura (Figura 14). Con un $R^2 = 0.968$, Γ está estimado con 4K/km, que es más bajo que el *standard atmospheric lapse rate* de 6.5K/km (Stull, 2000). Luego, se convierten las mediciones de temperatura a temperatura potencial (θ), aplicando Γ en ecuación 4. Después de la interpolación espacial de θ , se convierten los valores de vuelta a la temperatura actual aplicando Γ y un modelo digital de elevación (DEM) (Ec. 5). Según Stull (2000),

(Ec. 4)

(Ec. 5)

donde T es igual a temperatura actual de aire (K) medida a estaciones meteorológicas, θ es temperatura potencial (K), Γ es *local lapse rate* (Γ = 0.4 K/km), z es elevación de superficie

(m), $\theta(x,y)$ es temperatura potencial espacialmente interpolado (K) y T(x,y) es temperatura absoluta para cada pixel (K). El error de interpolación espacial se reduce cuando los datos están distribuidos en una manera normal. El histograma de Figura 15 muestra que los datos no están distribuidos en una manera normal, pero que contienen un skewness negativo con un coeficiente de skewness igual a -0.65, de igual manera, se considera que los datos son suficientemente bien interpolados, debido a que la distribución sólo contiene un pico y el skewness es moderado. Los datos también tienen que ser analizados con respecto a tendencias potenciales, si los datos contienen una tendencia hay que erradicarla antes y luego agregarla después de la interpolación. El análisis de tendencia visualizado en Figura 16 muestra una tendencia cuadrática en dirección NE (polinomio del segundo orden, línea azul) y no tendencia en la dirección NO (línea roja) o en cualquier otra dirección. Existen opciones infinitas para cuadrar modelos de interpolación espacial. Aquí, 4 modelos diferentes están examinados con temperatura promedio anual (Tabla 10). Los Modelos 1-3 están basados en kriging de θ . El Modelo 1 no incluye una erradicación de tendencia y el modelo 3 incluye anisotropy, que es influencia direccional. El Modelo 4 está basado en co-kriging de temperatura actual del aire (T) con elevación como co-variable. Comparando RMS y el error estándar promedio de cada modelo muestra, que se puede enfilar los modelos de la siguiente manera: m3, m2, m1 y m4; donde el primero es el modelo superior. A pesar de su error pequeño, se rechaza el modelo 3 porque produce superficies artificiales con tendencias sin explicaciones físicas plausibles. Por consiguiente se examina los modelos 1 y 2 más en detalle y en base a meses (Tabla 11). Con respecto a RMS, en la mitad de los casos, el modelo 2 es superior. Con respecto al error estándar promedio, el modelo 2 es superior al modelo 1 durante los 12 meses del año. Por consiguiente, se elige el modelo 2 con un RMS de 0.94°C para la interpolación espacial de θ . Un ejemplo del mapa de temperatura actual se muestra en la Figura 9. Para comparar datos de observaciones con resultados de modelos de PRECIS, los datos interpolados se agregan a las resoluciones espaciales de 0.44 y 0.22 grados decimales. Ambos datos cubren la extensión idéntica y se aplica un desfase espacial para que los márgenes de los pixeles sean consistentes.

Precipitación

Los datos de precipitación se analizan con respecto a posibles correlaciones con altitud de la superficie, su distribución y sus tendencias. En la Figura 14 se observa precipitación anual contra altitud, ambas variables tienen una correlación con un R^2 igual a 0.762. De todas formas, existen 3 datos anómalos entre 1000-2000msnm, donde la precipitación observada es mucho más alta que la función cuadrada. Los 3 datos anómalos son las estaciones Apolo, Chulumani e Irupana, todos localizados en el departamento de La Paz, dentro o al margen de la ecorregión Yungas. Es probable que una cobertura más completa de estaciones meteorológicas mostraría una relación más compleja entre precipitación y altitud, por lo tanto, la interpolación debería incluir altitud, pero no en una manera determinística. El histograma en la Figura 15 muestra que los datos tienen un skewness positivo y que no son distribuidos en una manera normal. El análisis de tendencia en la Figura 16 muestra un incremento lineal en dirección al NE y una tendencia de polinomio de segundo orden en dirección al SE. El análisis espacial muestra la complejidad de los datos e indica que se puede esperar una interpolación con un error alto. Se examinan y comparan 9 modelos de interpolación en la Tabla 10. Los modelos incluyen kriging y co-kriging con altitud y erradicación de tendencias del primer y segundo orden. El modelo con un RMS más bajo es el modelo más sencillo (modelo 1, kriging, sin erradicación de tendencia). Sin embargo, se aplica el modelo 6 con un RMS un poco más alto de 15.52 mm/mes para incluir efectos orográficos. El RMS de modelo 6 presenta el 20% de la precipitación observada y es como se esperaba, muy alto. Aplicando el modelo 6 a precipitación mensual, el RMS incrementa todavía a 38%.

2.5.4 Extracción de datos

Los resultados de PRECIS son en formato ".pp". El autor corre un *shell-script* en el cual calcula los promedios mensuales de 30 años, erradica la periferia alrededor del área geográfica de

modelaje, aplica un *regrid*, convierte los datos a la unidad física deseada y convierte el formato a texto. El año del *spin-up* está excluido de este proceso, se convierten los archivos de texto obtenidos en archivos de *grid* de ArcGIS y se dividen los datos en cuatro regiones, que son (*i*) Bolivia, (*ii*) las Tierras Bajas, (*iii*) la Vertiente Oriental (*iv*) el Altiplano. Para el análisis estadístico se exporta los datos a *Excel*.

3 Resultados

Los resultados contienen información de alta resolución sobre procesos relacionado a flujos dinámicos, ciclo atmosférico de azufre, nubes, precipitación, radiación, superficie terrestre y suelos. Aquí, se analizan y comparan los valores mensuales promedios de 30 años desde 1961-1990 de temperatura y precipitación con observaciones meteorológicas. En la Figura 9 se muestra temperatura y precipitación para GCM-ECHAM4, RCM-ECHAM4 y observaciones interpoladas.

3.1 Clima histórico (1961-1990)3.1.1 Análisis grid-a-grid

Temperatura

En la Figura 1 se compara la temperatura promedio mensual de cuatro modelos con observaciones espacialmente interpoladas, las observaciones muestran un ciclo mensual con valores altos durante diciembre hasta enero y bajos durante junio hasta julio para tres regiones. Todos los modelos siguen este ciclo estacional, los modelos sub-estiman temperatura observada en todos los 12 meses en la Vertiente Oriental y el Altiplano y en 9 meses en el caso de las Tierras Bajas. El RMS mensual de los modelos se ven en la Figura 17 para cada región explícitamente. Los modelos tienen un comportamiento parecido en el Altiplano y contrario en las Tierras Bajas y Vertiente Oriental.

En general, el RMS es más bajo en las Tierras Bajas (1.5° C), medio en la Vertiente Oriental (2.8° C) y alto en el Altiplano (3.2° C) (Tabla 3). La correlación espacial entre modelos y observación es muy alto (0.977-0.989) y constante durante todo el año cuándo examinamos Bolivia en su conjunto. Examinando las tres sub-regiones explícitamente, *r* baja y las diferencias entre modelos son más visibles (Figura 17). El cambio de *r* durante el año es similar entre modelos pero diferente para cada región, *r* es más bajo en las Tierras Bajas (0.71), medio en el Altiplano (0.81) y más alto en la Vertiente Oriental (0.85) (Tabla 3). Comparando el RMS promedio anual y *r* de los cuatro modelos, se ve que ECHAM4 resulta con un RMS más pequeño en todas las regiones y HadAM3Q tiene el *r* más alto en todas las regiones (Tabla 3).

						Promedio de	
Región	Temperatura	ECHAM4	HadAM3P	HadCM3Q	ERA40	los modelos	Mejor modelo
Tiomas	RMS^1	1.27	1.54	1.82	1.35	1.5	ECHAM4
Bajas	r^1	0.723	0.697	0.727	0.71	0.714	HadCM3Q
Dujus	$model = obs^2$	1	2	1	1	1.25	HadAM3P
Vertiente	RMS^1	2.58	3.02	3.09	2.68	2.84	ECHAM4
Oriental y Valles	r^1	0.856	0.852	0.858	0.849	0.854	HadCM3Q
Interandinos	$model = obs^2$	3	0	0	1	1	ECHAM4
	RMS^1	2.69	3.54	3.67	2.85	3.19	ECHAM4
Altiplano	r^1	0.801	0.794	0.826	0.804	0.807	HadCM3Q
	$model = obs^2$	2	0	0	2	1	ECH., ERA40
	RMS^1	1.93	3.58	2.55	2	2.52	ECHAM4
Bolivia	r^1	0.983	0.982	0.984	0.983	0.983	HadCM3Q
	$model = obs^2$	5	2	2	4	3.25	ECHAM4

Tabla 3 RMS promedio anual y correlación espacial de temperatura promedia

¹ promedio anual, ² # meses cuando no existe una diferencia significativa entre modelo y observación (testo-t, α =

0.05)

Precipitación

En la Figura 1 se compara precipitación modelada y observada al nivel de meses, las observaciones muestran un ciclo estacional con valores más altos durante diciembre hasta enero y más bajos durante junio hasta julio en todas de las tres regiones. Todos los modelos siguen este ciclo estacional. Todos los modelos sobre-estiman precipitación significativamente durante todos los meses en la Vertiente Oriental y durante casi todos los meses en el Altiplano. En las Tierras Bajas, sobre- y subestimación están balanceadas. El RMS expresado como porcentaje de precipitación promedio observado es más bajo en las Tierras Bajas (61% del monto observado), más alto en el Vertiente Oriental (284%) y mucho más alto en el Altiplano (355%) (Tabla 4). La correlación espacial entre precipitación modelada y observada es más alta en el Altiplano y más baja en las Tierras Bajas.

						Promedio de	
Región	Precipitación	ECHAM4	HadAM3P	HadCM3Q	ERA40	los modelos	Mejor modelo
Tiomas	RMS $(\%)^1$	54	57	66	68	61	ECHAM4
Bajas	r^1	0.36	0.32	0.17	0.16	0.25	ECHAM4
2 4 1 4 5	$model = obs^2$	0	2	1	0	0.75	HadAM3P
Vertiente	RMS $(\%)^1$	212	270	270	384	284	ECHAM4
Oriental y Valles	r^1	0.62	0.62	0.61	0.59	0.61	ECHAM4
Interandinos	$model = obs^2$	0	0	0	0	0	-
	RMS $(\%)^1$	254	338	327	502	355	ECHAM4
Altiplano	r^1	0.69	0.7	0.68	0.71	0.7	ERA., HadAM3P
	$model = obs^2$	1	1	0	0	0.5	ECH., HadAM3P
	RMS $(\%)^1$	91	547	113	144	224	ECHAM4
Bolivia	r^1	0.45	0.37	0.3	0.3	0.35	ECHAM4
	$model = obs^2$	1	1	2	0	1	HadCM3Q

Tabla 4 RMS promedio anual y correlación espacial de precipitación mensual

¹ promedio anual, ² # meses cuando no existe una diferencia significativa entre modelo y observación (testo-*t*, $\alpha = 0.05$)

Figura 1 Temperatura (izq.) y precipitación (der.) mensual modelada y observada. Los modelos incluyen experimentos de PRECIS con ECHAM4, HadAM3P, HadCM3Q y ERA40 como insumo (*lowlands* = Tierras Bajas, *sub-Andes* = Vertiente Oriental y Valles Interandinos, *highlands* = Altiplano)

3.1.2 Comparación de GCM, RCM y observaciones

En la Figura 2 se compara GCM-ECHAM4, RCM-ECHAM4 (50km) y RCM-ECHAM4 (25km) con temperatura y precipitación observada. Con respecto a temperatura, los resultados del RCM son más similares a las observaciones que los resultados del GCM y los datos con resolución de 25km son más cercanos a observaciones que los con resolución de 50km. Con respecto a la precipitación, el patrón está al revés, aquí los resultados del GCM son mucho más similares a observaciones que los RCM y los resultados con resolución de 50km son un poco más parecidos a las observaciones que los resultados con resolución de 25km. La similitud entre precipitación modelada por el GCM y observaciones en el Altiplano es notable.

Figura 2 Temperatura (izq.) y precipitación (der.) mensual modelada y observada. Los modelos incluyen experimentos de PRECIS con ECHAM4 de 50km y 25km resolución y el GCM-ECHAM4 (*lowlands* = Tierras Bajas, *sub-Andes* = Vertiente Oriental y Valles Interandinos, *highlands* = Altiplano)

3.1.3 Análisis punto-a-punto

La interpolación espacial de observaciones meteorológicas introduce un error. Para erradicar este error, se comparan los resultados de PRECIS con resolución de 0.22 grados con observaciones meteorológicas, GCM y ERA40 para las localizaciones de los estaciones meteorológicas (Tabla 13).

Temperatura

El RMS de temperatura en Bolivia está estimado con 3.8° C y con 1.4° C, 4.9° C y 5.5° C en Tierras Bajas, Vertiente Oriental y Altiplano respectivamente. Como se observa en la Figura 3, el modelo sub-estima la temperatura sistemáticamente en la Vertiente Oriental y en el Altiplano. En las Tierras Bajas, no existe un error sistemático. La correlación espacial es 0.91 (-), con valores más bajos en el Altiplano. Según el testo-*t*, temperatura modelada y observada son significativamente diferentes en el Altiplano y Vertiente Oriental y no significativamente diferentes astronometrico diferentes en las Tierras Bajas.

Precipitación

El RMS de precipitación en Bolivia se estima con 119 mm/mes, que corresponde a 150% de la precipitación promedio. El RMS es más bajo en las Tierras Bajas (62%) y más alto en la Vertiente Oriental y el Altiplano (256% and 252%). El modelo sistemáticamente sobre-estima precipitación en el Altiplano y la Vertiente Oriental (Figura 3). La correlación espacial es 0.73

(-) al nivel del país. Según el testo-*t*, precipitación modelada y observada son significativamente diferentes en las tres regiones.

fabla 5 Resumen del testo- t ($\alpha = 0.05$)								
į, y es si	gnificati	vamente						
diferente a <i>x</i> ?			Temperatura			Precipitación		
			Tierras	Vertiente		Tierras	Vertiente	
У	x	lapso	Bajas	Oriental	Altiplano	Bajas	Oriental	Altiplano
GCM	OBS	1961-1990	si	si	si	no	no	si
RCM LBC	OBS	1961-1990	no	si	si	si	si	si
RCM ERA	OBS	1961-1990	si	si	si	si	si	si
RCM LBC	GCM	1961-1990	si	si	si	si	si	si

Modeled vs. observed temperature at 22 stations in lowlands (1961-1990)

Observation (°C)

ECHAM4 (25km) (°C)

Modeled vs. observed precipitation at 57 stations in all Bolivia (1961-1990)

Modeled vs. observed precipitation at 20 stations in lowlands (1961-1990)

Figura 3 Temperatura (izquierda) y precipitación (derecha) modelada versus observada en la localización de las estaciones meteorológicas. La línea muestra donde el modelo es igual a las observaciones (*lowlands* = Tierras Bajas, *sub-Andes* = Vertiente Oriental y Valles Interandinos, *highlands* = Altiplano).

3.2 Cambio Climático

3.2.1 Tendencias observadas

Hasta donde el autor sabe, existe sólo un estudio (no publicado) que examina tendencias de cambio climático en Bolivia basado en mediciones meteorológicas (Ontiveros). Su análisis está basado en temperatura y precipitación de extremos desde 1941-2004 de 19 estaciones. Las conclusiones generales son que (*i*) se aumenta la temperatura diaria mínima significativamente y que este incremento es más pronunciado en el extremo norte y sur del país. Con respecto a precipitación, Ontiveros concluye (*ii*) que se aumenta la húmedad en el parte norte y central del país y en el parte más central de la Vertiente Oriental. Además, (*iii*) se observan condiciones más secas en el Altiplano y al extremo sur de las Tierras Bajas.

3.2.2 Tendencias modeladas

Se examina el cambio climático con respecto a los resultados de PRECIS de la simulación de ECHAM4 con resolución espacial de 25km. Los Cambios de temperatura y precipitación están resumidos en la Tabla 6 y Tabla 7 respectivamente. Los números en el texto de este capítulo muestran los promedios del SRES A2 y B2.

Temperatura

La Temperatura se incrementa en toda Bolivia bajo ambos SRES con temperaturas más altas para el SRES A2 (Figura 4). En el año 2030, la temperatura se incrementa en 1.3°C, 1.2°C y 1.4°C en las Tierras Bajas, la Vertiente Oriental y el Altiplano respectivamente. En el año 2100 la temperatura aumenta en 4.7°C, 4.2°C y 5.2°C en las Tierras Bajas, la Vertiente Oriental y el Altiplano respectivamente. En la mayoría de los casos, el incremento mayor ocurre durante el mes de Agosto. El incremento de temperatura promedio anual entre los años 2030 y 2100 se muestra en la Figura 6. Esta figura muestra que el Altiplano y el extremo norte de Bolivia cuentan con un incremento más fuerte, una tendencia confirmada por observaciones

meteorológicas (capítulo 3.2.1). Las Tierras Bajas muestran una gradiente de temperatura latitudinal con un incremento de cambio de temperatura en dirección al norte, esta tendencia se vuelve más pronunciada aún en el año 2100. Los mapas de cambio de temperatura mensual para SRES A2 se muestran en la Figura 10 (2001-2030) y Figura 12 (2071-2100). Los cambios en la variabilidad climática están cuantificados a través de la comparación en la desviación estándar de información espacial y temporal. El cambio de la desviación estándar es menor a 1°C, en general, la variabilidad se incrementa un poco en las Tierras Bajas y sigue constante o disminuye un poco en el Altiplano. La variabilidad temporal se incrementa un poco en las Tierras Bajas y Vertiente Oriental y muestra resultados contradictorios en el Altiplano.

Precipitación

El ciclo de precipitación se intensifica con más precipitación durante la época de lluvia y menos precipitación durante la época seca, esta intensificación es más pronunciada en caso de SRES A2, comparado con B2. La mayoría del incremento relativo máximo de precipitación ocurre desde Abril hasta Junio y la mayoría del decremento relativo máximo durante Julio a Agosto. Los siguientes números presentan el promedio entre A2 y B2 como está resumido en la Tabla 6 y Tabla 7. En el año 2030, el decremento máximo de precipitación es -28%, -11% y -19% en Tierras Bajas, Vertiente Oriental y Altiplano respectivamente. Durante el mismo lapso, se aumenta la precipitación máxima en 17%, 8% y 25% en Tierras Bajas, Vertiente Oriental y Altiplano respectivamente. En el año 2100, la precipitación se reduce al máximo en -36%, -15% y -32% en Tierras Bajas, Vertiente Oriental y Altiplano respectivamente, durante el mismo lapso, la precipitación se incrementa en 45%, 38% y 36% en Tierras Bajas, Vertiente Oriental y Altiplano, respectivamente. La Figura 6 muestra el cambio neto de precipitación anual (centro) y el número de meses, donde la precipitación mensual es mayor entre los años 2030 y 2100 que en 1990 (derecha). La mayoría del decremento anual neta de la precipitación ocurre en el Altiplano y por otra parte en el extremo norte del país (Amazonia). La mayoría del incremento neto ocurre en el extremo sur de las Tierras Bajas (bosques secos) y por partes en las áreas nortes de la Vertiente Oriental, la distribución de meses más húmedos y más secos siguen este patrón. Las tendencias observadas como se presenta en el capítulo 3.2.1 confirman las tendencias modeladas sólo con respecto a condiciones más secas en el Altiplano. Hasta ahora, no se observa una disminución de precipitación en el norte del país. Los mapas de cambio de precipitación mensual están mostrados en la Figura 11 para los años 2001-2030 y en la Figura 13 para los años 2071-2100 (ECHAM4, SRES A2). Contrariamente a la temperatura, se cuantifica la variabilidad de precipitación no por la desviación estándar, sino por el coeficiente de varianza (*cv*), el cual es igual a la desviación estándar dividida por el promedio absoluto. En el año 2030, la variabilidad espacial de precipitación aumenta en 3%, 2% y 13% en las tierras bajas, Vertiente Oriental y Altiplano respectivamente. La variabilidad sigue relativamente constante hasta el año 2030. En el año 2100 la variabilidad espacial de precipitación aumenta en 5%, 6% y 41% y la variabilidad temporal cambia en 4%, -1% y 5% en las Tierras Bajas, Vertiente Oriental y Altiplano respectivamente.

Temperatura	ECHAM4 (25km)	2001-2030		2071-	-2100
Región	Variable	A2	B2	A2	B2
	ΔT_{mean} (°C)	1.34	1.17	5.49	3.92
Tierras	mes de ΔT_{max}	AUG	AUG	SEP	AUG
Bajas	Δ spatial std dev	0.1	0.08	0.59	0.39
	Δ temporal std dev	0.05	0.12	0.17	0.04
Vertiente	ΔT_{mean} (°C)	1.25	1.08	4.84	3.51
Oriental y	mes de ΔT_{max}	AUG	DEC	SEP	JUL
Valles	Δ spatial std dev	-0.06	-0.04	-0.16	-0.15
Interandinos	Δ temoral std dev	0.03	0.11	-0.11	-0.06
	ΔT_{mean} (°C)	1.57	1.27	5.96	4.44
Altiplano	mes de ΔT_{max}	NOV	DEC	JUL	JUL
Ampiano	Δ spatial std dev	-0.04	0	-0.06	-0.04
	Δ temporal std dev	0.11	0.2	-0.13	-0.11

Tabla 6 Cambio de temperatura promedio, desviación estándar espacial y temporal de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 2001-2030 y 2071-2100 para SRES A2 y B2.

Tabla 7 Cambio de precipitación promedio, coeficiente de variación (*cv*) espacial y temporal de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 2001-2030 y 2071-2100 para SRES A2 y B2.

Precipitación	pitación ECHAM4 (25km) 2001-2030		2071-2100		
Región	Variable	A2	B2	A2	B2
	max. neg. $\Delta P(\%)$	-38.72	-16.81	-36.01	-35.78
	max. pos. $\Delta P(\%)$	16.26	18.44	52.97	37.21
Tierras	mes max. neg. $\Delta P(\%)$	JUL	JUL	SEP	AUG
Bajas	mes max. pos. $\Delta P(\%)$	ABR	MAY	APR	APR
	Δcv (%) espacial	7.8	-2.25	2.64	7.16
	Δcv (%) temporal	1.26	0.67	4.56	4.42
	max. neg. $\Delta P(\%)$	-8.14	-14.12	-11.66	-18.29
Vertiente	max. pos. $\Delta P(\%)$	10.66	5.51	50.3	26.03
Oriental y	mes max. neg. $\Delta P(\%)$	JUL	AGO	AGO	AGO
Valles	mes max. pos. $\Delta P(\%)$	APR	NOV	JUN	JUN
Interandinos	Δcv (%) espacial	3.1	1.72	4.99	6.92
	Δcv (%) temporal	-0.64	0.1	-2.77	-0.16
	max. neg. $\Delta P(\%)$	-26.39	-11.67	-37.22	-26.48
	max. pos. $\Delta P(\%)$	26.43	22.97	49.46	21.55
Altiplana	mes max. neg. $\Delta P(\%)$	MAY	JUN	DIC	NOV
Antipiano	mes max. pos. $\Delta P(\%)$	ABR	ABR	JUL	SEP
	Δcv (%) espacial	17.77	7.64	38.16	44.34
	Δcv (%) temporal	-0.01	-2.43	3.61	7.18

Figura 4 Temperatura promedio mensual (izq.) y cambio de temperatura promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Valles Interandinos y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 y B2 (*lowlands* = Tierras Bajas, *sub-Andes* = Vertiente Oriental y Valles Interandinos, *highlands* = Altiplano).

Monthly mean air temperature (ECHAM4 25km)

Monthly mean air temperature change (ECHAM4 25km)

Figura 5 Precipitación promedio mensual (izq.) y cambio de precipitación promedio mensual (derecha) de RCM-ECHAM4 (25km) en las Tierras Bajas, Vertiente Oriental y Altiplano en 1961-1990, 2001-2030 and 2071-2100 para los SRES A2 y B2 (*lowlands* = Tierras Bajas, *sub-Andes* = Vertiente Oriental y Valles Interandinos, *highlands* = Altiplano).

Figura 6 Cambio promedio anual (izq.) y precipitación (cent.) y números de meses con un incremento precipitación (der.) para 2001-2030 (arriba) y 2071-2100 (abajo) (ECHAM4, A2).

4 Análisis de error 4.1 Datos de observación

La calidad de datos de observación depende de p.ej. (*i*), la calidad de los instrumentos de medición, (*ii*) la completitud de la serie de tiempo, (*iii*) la representatividad de la cobertura espacial de estaciones y (*iv*) la calidad de la interpolación espacial. Como el error es sistemático, (*i*) y (*ii*) no son las principales fuentes de error probables. Es probable que (*iii*) sea una fuente de error con mayor importancia, ya que las estaciones están localizadas sólo en los márgenes del Este del altiplano, se puede esperar una variabilidad espacial muy alta por efectos orográficos en la Vertiente Oriental. De todas formas, como el error es claramente sistemático, la densidad baja de estaciones no es considerada como fuente de error principal. (*iv*) no es la fuente de error principal, porque las comparaciones *grid-a-grid* y *punto-a-punto* muestran tendencias iguales. Por consiguiente, la calidad de datos de observación no está considerada como fuente de error principal.

4.2 Lateral Boundary Conditions

LBC presenta la principal fuente de error si los resultados de PRECIS obtenidos de ERA40 son substancialmente mejor que los resultados de PRECIS obtenidos de LBC de GCM. Como éste no es el caso, y como el GCM-ECHAM4 muestra valores de temperatura más cercanos a las observaciones que resultados de RCM, el LBC no es la fuente de error principal.

4.3 PRECIS

Como los datos de observación y LBC no presentan las fuentes principales de error, PRECIS es el la causa principal de la sub-estimación de temperatura y sobre-estimación de precipitación en la Vertiente Oriental y en el Altiplano. Esta conclusión está confirmada por los resultados de las aplicaciones de diferentes RCM, los cuales muestran un error mayor en los Andes en comparación con las Tierras Bajas (capítulo 1.2). El error puede ocurrir por una representación incorrecta de la topografía y/o de las técnicas de parametrización. Sin embargo, está fuera del

alcance del presente análisis, el examinar la aplicabilidad de la parametrización de PRECIS para los Andes.

Como alternativa, se compara el error observado en el caso de Bolivia con el error de otras aplicaciones de RCM para evaluar, si el error está dentro de un marco típico que se debe esperar. En la Tabla 14 se enumera el error de 31 RCM de aplicaciones en Europa, Asia, África y América Sur. Respecto a la temperatura, los 31 RCM muestran un error de 1.65°C con una desviación estándar de 0.95°C, y con respecto a la precipitación el error es del 21% con un error estándar de 9%. Aplicando estos rangos, la aplicación de PRECIS en Bolivia está dentro de un margen de error que se puede esperar, pero sólo con respecto a temperaturas en las Tierras Bajas. La comparación tiene sus limitaciones, porque este estudio cuantifica la diferencia entre una variable modelada y observada como RMS, mientras, las otras aplicaciones de RCM expresan sus diferencias como errores, RMS y error son igual si el error es sistemático; RMS es mayor si el error es arbitrario.

5 Conclusiones y discusión

Clima reciente

- GCM, RCM y las observaciones muestran un ciclo estacional de temperatura y precipitación. Los meses de valores mínimos y máximos coinciden entre GCM, RCM y observación.
- Existe correlación espacial entre variables modeladas y observadas.
- El LBC ECHAM4 muestran un RMS comparado a otras LBC.
- Por la baja densidad de estaciones meteorológicas y por la heterogeneidad alta de la topografía Boliviana, la calidad de las interpolaciones espaciales de observaciones meteorológicas están limitadas, sin embargo, no está considerada la fuente de error principal.
- El análisis de error indica que la fuente de error no son los datos de observaciones, ni el LBC, sino PRECIS mismo. Las diferencias entre variables modeladas y observadas pueden ser causadas por la representación de la topografía del modelo o por parametrizaciones.
- Con respecto a temperatura,
 - el patrón espacial de la interpolación espacial de observaciones y los resultados del RCM, coinciden.
 - Los resultados del RCM son más cercanos a los de las observaciones que los resultados de GCM.
 - Los datos con una resolución de 25km son más cercanos a las observaciones que los datos con una resolución de 50km.
 - El RCM sistemáticamente sub-estima la temperatura en la Vertiente Oriental y Valles Interandinos y el Altiplano.
 - El RCM-ECHAM4 estima la temperatura en las Tierras Bajas de forma correcta, basado en la comparación con observaciones en las localizaciones de estaciones meteorológicas.
 - El GCM-ECHAM4 sub-estima la temperatura en las Tierras Bajas y Vertiente Oriental y Valles Interandinos y sobre-estima la temperatura en el Altiplano.
- Con respecto a precipitación,
 - el patrón espacial de la interpolación espacial de observaciones y los resultados del RCM, no coinciden.
 - Los resultados del GCM son más cercanos a las observaciones que los del RCM.
 - Los datos con una resolución de 50km se acercan un poco más a las observaciones que los datos con una resolución de 25km.
 - El RCM sistemáticamente sobre-estima precipitación en la Vertiente Oriental y el Altiplano.
 - La precipitación modelada es significativamente diferente a las observaciones.

- Las diferencias relativas entre los resultados de RCM-ECHAM4 y observaciones son más bajas en las tierras bajas.
- El GCM ECHAM4 no muestra un error sistemático y es más similar a observaciones que el RCM.
- Los resultados del RCM en la Vertiente Oriental y el Altiplano se distinguen sistemáticamente, tanto de las observaciones como de los resultados que no son válidos. En el caso de las tierras bajas, las estimaciones de temperatura son válidas y la precipitación es inválida. Pero, tomando en cuenta la baja densidad de estaciones meteorológicas y el hecho que las diferencias entre modelos y observaciones no son sistemáticas, el resultado en las Tierras Bajas podría ser considerado como razonable.

Cambio Climático

- PRECIS modela un incremento de temperatura más fuerte en el Altiplano y en la Amazonia. Esta tendencia está confirmada por tendencias observadas desde 1941 hasta 2004. La variabilidad espacial y temporal no cambia.
- PRECIS modela un ciclo de precipitación más intenso, con más precipitación en la época de lluvia y menos precipitación durante la época seca.
- La mayoría del decremento anual neto de precipitación ocurre en el Altiplano y en el extremo norte (Amazonia).
- El incremento anual neto de precipitación ocurre en el extremo sur de las Tierras Bajas (bosque seco) y en parte del área norte de la Vertiente Oriental y Valles Interandinos. Las tendencias observadas como se presenta en el capítulo 3.2.1, confirman las tendencias modeladas, sólo con respecto a tendencias más secas en el Altiplano. Hasta ahora, no se observa un decremento de precipitación en la Amazonia.
- El incremento de 5°C y el decremento simultáneamente de precipitación de 36% durante la época seca, puede implicar impactos graves con respecto a producción agrícola, riesgo de fuego y estabilidad de ecosistemas. Un incremento de precipitación del 45% durante la época lluviosa implica un aumento de riesgo de inundaciones y erosión.

Investigación a seguir

- Para localizar la fuente de error, el autor recomienda (*i*) comparar la altitud utilizada por PRECIS con un modelo digital de elevación, (*ii*) mejorar la calidad de la interpolación espacial de precipitación con datos de sensores remotos y (*iii*) revisar la aplicabilidad de las metodologías de parametrización para los Andes.
- Si la altitud utilizada en PRECIS no sobre-estima la altitud real y la parametrización de precipitación no es aplicable para los Andes, se debe considerar la implementación de un RCM alternativo.
- Si sólo el clima de las Tierras Bajas es de interés, una segunda evaluación con una mejor interpolación espacial de precipitación como se menciona arriba, puede ser exitosa.
- De todas formas, una evaluación completa de un RCM debería incluir un análisis con más variables que temperatura y precipitación. También, se debería examinar patrones de circulación como el *low-level jet*, el *Bolivian high* y *Chaco low* (capítulo 1.3), y también se debería analizar la consistencia interna del modelo, comparando variables directamente relacionadas.
- Por la gradiente latitudinal de precipitación (capítulo 2.3), el autor recomienda analizar la parte norte y sur de las Tierras Bajas de una manera separada.

REFERENCIAS

Chapin S., Matson P., Mooney H., (2002). "Pinciples of Terrestrial Ecosystem Ecology". Springer Science+Business Media, Inc.

Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree and J. Smith, (1999) "The impact of new land surface physics on the GCM simulation of climate and climate sensitivity". *Clim. Dyn.*, 15:183-203.

Fu, C., Wang, S., Xiong, Z., Gutowski, W. (2003) "Regional Climate Model Intercomparison Project for Asia (RMIP)". Submitted to *Bulletin of the American Meteorological Society*

Garreaud, R., (2003) "The Low-Level Jet off the West Coast of Subtropical South America: Structure and Variability". *Monthly weather review, Volume 133*

Garreaud, R.D., *et al.*, (2008) "Present-day South American climate". *Paleogeogr. Palaeoclimatol. Palaeoecol.*, *doi:10.1016/j.palaeo.2007.10.032*

Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell and R. A. Wood, (2000) "The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments". *Clim. Dyn.*, 16:147-168

Ibisch P.L. & G. Mérida (eds.) (2003). "Biodiversidad: La riqueza de Bolivia. Estado de conocimiento y conservación. Ministerio de Desarrollo Sostenible". *Editorial FAN, Santacruz de la Sierra – Bolivia*.

Jacob, D., Bärring, L., Christensen, O., et al., (2007) "An inter-comparison of regional climate models for Europe: model performance in present-day climate" *Climatic Change* (2007) 81:31–52 DOI 10.1007/s10584-006-9213-4

Jones, R.G., Noguer, M., Hassell, D.C., Hudson, D., Wilson, S.S., Jenkins, G.J. and Mitchell, J.F.B. (2004) "Generating high resolution climate change scenarios using PRECIS". *Met Office Hadley Centre, Exeter, UK, 40pp*

Killeen, T. J., A. Guerra, M. Calzada, L. Correa, V. Calderon, L. Soria, B. Quezada, and M. K. Steininger (2008) "Total historical land-use change in eastern Bolivia: Who, where, when, and how much?" *Ecology and Society* **13**(1): 36

Köhler, W., Schachtel, G., Voleske, P., (2002) "Biostatistik: Einführung in die Biometrie für Biologen und Agrarwissenschaftler". *3. Aufl., Springer Verlag, ISBN 3-540-42947-6, pp. 101*

Islam, N., Rafiuddin, M., Ahmed, A., Kolli, R., (2007) "Calibration of PRECIS in employing future scenarios in Bangladesh". *Int. J. Climatol, doi: 10.1002/joc.1559*

Marengo, J.A., Jones, R., Alves, L. Valverde, M. (2009) "Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system". *Int. J. Climatol., DOI: 10.1002/joc.1863*

Molina, G., Estenssoro, A., Arce, R., Ocampo, M., Arauco, V., Sánchez, M. (2009) "La otra frontera – Usos alternativos de recursos naturales en Bolivia". *Informe temático sobre Desarrollo Humano del Programa de las Naciones Unidas para el Desarrollo (PNUD)*

Ontiverus, M. "Identificación de Ídices de cambio climático en el territorio boliviano (En Base a R-ClimDex)". *Programma Nacional de Cambio Climático (PNCC), unpubl.*

Roads, J., S. Chen, S. Cocke, L. Druyan, M. Fulakeza, T. LaRow, P. Lonergan, J.-H. Qian, and S. Zebiak, (2003) "International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America". J. Geophys. Res., 108(D14), 4425, doi:10.1029/2002JD003201, 2003.

Seth, A., Rauscher, S., Camargo, S., Qian, J., Pal, J. (2007) "RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields". *Clim Dyn* (2007) 28:461–480, DOI 10.1007/s00382-006-0191-z

Silvestri, G., Vera, C., Jacob, D., Pfeifer, S., Teichmann, C. (2009) "A high- resolution 43-year atmospheric hindcast for South America generated with the MPI regional model". *Clim Dyn* (2009) 32:693–709, DOI 10.1007/s00382-008-0423-5

Stull, R. (2000) "Meteorology for Scientists and Engineers". *Brooks/Cole*

Uppala., S.M., Kallberg, P., Simmons, A., Andrae, U. (2005) "The ERA-40 re-analysis". Q. J. R. Meteorol. Soc. (2005), 131, pp. 2961–3012

Veblen, T., Young, K., Orme, A. (2007) The Physical Geography of South America. Oxford University Press

Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D.,Marengo, J., Mechoso, C.R., Nogues-Paegle, J., Silva Diaz, P.L., Zhang, C. (2006) "Towards a unified view of the American Monsoon System". *J. Climate 19, 4977–5000*

ANEXOS

Figuras

Figura 7 Surface elevation map of Bolivia (SRTM 90m Digital Elevation Model (DEM))

Figura 8 Distribution of meteorological stations for temperature (left) and precipitation (right) in lowlands, sub-Andes and highlands.

Figura 9 Temperature (left) and precipitation (right) of GCM (above), RCM (middle) and observation (below)

Figura 10 Change of mean monthly air temperature (°C) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2)

Figura 11 Change of mean monthly precipitation (%) during 2001-2030 in reference to 1961-1990 (ECHAM4 A2)

Figura 12 Change of mean monthly air temperature (°C) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2)

Figura 13 Change of mean monthly precipitation (%) during 2071-2100 in reference to 1961-1990 (ECHAM4 A2)

Figura 14 Temperature (left) and precipitation (right) plotted against altitude

Figura 15 Histogram of annual mean potential air temperature (θ) (left) and annual mean precipitation (P) (right)

Figura 16 Trend analysis potential air temperature (left) and precipitation (right) (x = east, y = north, $z = \theta$ (left) z = P (right), rotation angle = 30° and 50°)

Figura 17 Spatial correlation (left) and RMS (right) of temperature

Figura 18 Spatial correlation (left) and RMS (right) of precipitation

Tablas

Tabla 8 Examples of Regional Climate Modela applications in South America

Publication	Roads et al., (2003)
Institute	University of California
RCM	RSM, FSUNRM, RCM, RegCM2
LBC	NCEP/NCAR reanalysis
Spatial resolution	50km
Slot	1997-1999
SRES	n.a.
Validation data	Land observations, (Xie and Arkin, 1997)
Model performance S. America	Temperature: n.a.
Climate change S. America	Precipitation: Seasonal precipitation cycle present. 3 out of 4 RCM show stronger precipitation error in high- than lowlands in Bolivia.
Climate change S. America	n.a.
	Seth <i>et al.</i> , (2007)
Institute	Columbia University
	RegCM3
	ECHAM, NCEP/NCAR
Spatial resolution	80km
Slot	1950-2002
SRES	n.a.
Validation data	CMAP
Model performance S. America	Temperature: n.a.
	Precipitation: seasonal cycle present, dry bias in Amazon, wet bias in the south and east of Andes
Climate change S. America	n.a.
Publication	Silvestri et al., (2009)
Institute	CIMA/CONICET University of Buenos Aires, MPI
RCM	REMO
LBC	ERA40
Spatial resolution	0.5 degree
Slot	1958-2000
SRES	
	n.a.
Validation data	n.a. Meteorological observations (not spatially interpolated)
Validation data Model performance S. America	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C
Validation data Model performance S. America	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes
Validation data Model performance S. America Climate change S. America	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes n.a.
Validation data Model performance S. America Climate change S. America Publication	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes n.a. Marengo <i>et al.</i> , (2009)
Validation data Model performance S. America Climate change S. America Publication Institute	 n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes n.a. Marengo <i>et al.</i>, (2009) CPTEC/INPE Brazil, UK Met Office Hadley Centre
Validation data Model performance S. America Climate change S. America Publication Institute RCM	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes n.a. Marengo <i>et al.</i> , (2009) CPTEC/INPE Brazil, UK Met Office Hadley Centre PRECIS
Validation data Model performance S. America Climate change S. America Publication Institute RCM LBC	n.a. Meteorological observations (not spatially interpolated) Temperature: Seasonal cycle present. Mainly overestimation, RMS 1.5°C Precipitation: Realistic temporal pattern of precipitation. Systematic overestimation of precipitation especially in the Andes n.a. Marengo <i>et al.</i> , (2009) CPTEC/INPE Brazil, UK Met Office Hadley Centre PRECIS HadCM3Q

Slot	10 (1 1000 2071 2100			
SRES	1901-1990; 20/1-2100			
Validation data	A2, B2			
Valuation data	CRU			
Model performance S. America	Temperature: Realistic spatial and temporal patterns. Underestimation, especially Andes			
	Precipitation: Realistic spatial and temporal patterns. Overestimation during rainy season in Andes (DJF, SON). Underestimation of precipitation in Amazon (DJF, MAM)			
Climate change S. America	Temperature: Amazon: +3 to +4°C (B2, 2100), Eastern Amazon: +8°C (A2, 2100)			
	Precipitation: Eastern Amazon: -5 to -20% (B2, 2100), Eastern Amazon: -40% (A2, 2100)			
Publication	Sörrensson et al., (2009) (unpublished)			
Institute	University of Buenos Aires			
RCM	RCA3			
LBC	ECHAM5, ERA40			
Spatial resolution	0.5 degree			
Slot	1980-1999, 2080-2099			
SRES	A1B			
Validation data	CRU			
Model performance S. America	Temperature: underestimation in Andes, overestimation in some parts of lowlands			
	Precipitation: overestimation in Andes			
Climate change S. America	Temperature: maximum increase in the Amazon (6-7°C) and Andes			
	Precipitation: decrease in southern Amazon and Bolivian Andes			
Publication	Urrutia and Vuille (2009)			
Institute	University of Massachusetts			
RCM	PRECIS			
LBC	HadCM3			
Spatial resolution	0.44 degree			
Slot	1961-1990, 2071-2100			
SRES	A2, B2			
Validation data	CRU			
Model performance S. America	Cold and wet bias, especially in Andes			
Climate change S. America	Temperature: strong increase in Bolivian Andes and Amazon (especially NE-Amazon)			
	Precipitation: decrease in Bolivian Andes and Amazon (especially NE-Amazon)			

	(, ,	/ (/ /
Characteristics	A1B	A2	B2
Population growth	low	high	medium
GDP growth	very high	medium	medium
Energy use	very high	high	medium
Land-use changes	low	medium/high	medium
Resource availability	medium	low	medium
Pace and direction of technological change	rapid	slow	medium
Change favoring	balanced	regional	"dynamics as usual"

Tabla 10 Interpolation models

			Order of			Searching		
			trend		Angle	neighborhood		mean
ID	variable	Method	removal	Anisotropy	direction	options	RMS	std.error
1	θ	kriging	none	no	no	default	0.957	1.244
2	θ	kriging	2nd	no	no	default	0.940	1.160
3	θ	kriging	2nd	yes	84.0	default	0.918	1.156
4	Т	co-kriging (<i>z</i>)	none	no	no	default	2.059	3.645
1	Р	kriging	none	no	no	default	15.32	21.92
2	Р	kriging	1st	no	no	default	16.00	19.04
3	Р	kriging	2nd	no	no	default	18.74	16.63
4	Р	kriging	1st	yes	123.7	default	15.70	17.59
5	Р	kriging	2nd	yes	127.0	default	18.47	16.05
6	Р	co-kriging (<i>z</i>)	none	no	no	default	15.52	21.65
7	Р	co-kriging (<i>z</i>)	1st	no	no	default	16.21	20.59
8	Р	co-kriging (<i>z</i>)	2nd	no	no	default	26.80	25.26
9	Р	co-kriging (z)	2nd	yes	137.6	default	28.92	25.68

	1.4		0.444		Which model	
	ml*		m2**		performs better?	
	RMS error	mean std.error	RMS error	mean std.error	RMS error	mean std.error
JAN	0.79	1.09	0.82	1.06	m1	m2
FEB	0.77	1.09	0.81	1.04	m1	m2
MAR	0.78	1.05	0.82	1.01	m1	m2
APR	0.96	1.23	1.00	1.17	m1	m2
MAY	1.31	1.65	1.16	1.39	m2	m2
JUN	1.68	1.91	1.51	1.60	m2	m2
JUL	1.71	1.90	1.57	1.55	m2	m2
AUG	1.55	1.78	1.38	1.44	m2	m2
SEP	1.38	1.62	1.21	1.29	m2	m2
OCT	1.09	1.34	1.05	1.24	m2	m2
NOV	1.00	1.31	1.02	1.27	m1	m2
DEC	0.86	1.18	0.92	1.08	m1	m2

Tabla 11 Interpolation models for temperature using monthly data

*m1= ordinary kriging using default options, **m2 = ordinary kriging with second order trend removal

Tabla 12 Interpolat	tion model for pre	cipitation using 1	nonthly data

	m6					
	RMS error (mm/month)	mean std.error	mean OBS (mm/month)	RMS (%)		
JAN	30.20	42.91	165.80	18.21		
FEB	31.71	40.67	147.89	21.44		
MAR	29.62	33.52	124.50	23.79		
APR	19.84	23.71	65.79	30.15		
MAY	15.64	18.11	36.26	43.13		
JUN	15.39	15.94	18.41	83.58		
JUL	11.70	12.57	14.18	82.53		
AUG	13.65	18.45	22.09	61.80		
SEP	13.38	18.71	36.44	36.72		
OCT	13.56	21.60	64.41	21.05		
NOV	20.00	27.53	92.55	21.61		
DEC	26.64	34.98	142.41	18.71		
			mean RMS (%)	38.56		

ID			Validation	All Bolivia	Lowlands	Sub-Andes	Highlands	
			RMS (°C)	7.24	8.59	6.80	5.50	
	AM4 vs. OBS	np.	r	0.55	0.35	0.70	0.33	
		Ter	t_{Vers}	9.801	14.881	17.531	5.042	
			$t_{Tab} (\alpha = 0.05)$	1.961	1.970	1.970	1.970	
а			RMS (mm/month)	63	74	75	24	
	ECH		RMS (%)	79%	58%	122%	57%	
	M	Prec	r	0.73	0.67	0.62	0.86	
	g	I	t_{Vers}	0.445	0.551	1.590	2.586	
			$t_{Tab} (\alpha = 0.05)$	1.963	1.970	1.970	1.970	
			RMS (°C)	3.75	1.42	4.86	5.50	
	BS	np.	r	0.91	0.85	0.79	0.43	
	/s. C	Ter	t_{Vers}	4.423	1.039	11.923	4.508	
	m) /		$t_{Tab} (\alpha = 0.05)$	1.961	1.970	1.970	1.970	
b	25k		RMS (mm/month)	119	80	158	109	
	A4 (Prec.	RMS (%)	150%	62%	256%	252%	
	ECHAN		r	0.73	0.83	0.88	0.74	
			t_{Vers}	10.183	2.972	8.955	6.551	
			$t_{Tab} (\alpha = 0.05)$	1.963	1.970	1.970	1.970	
			RMS (°C)	3.80	1.67	5.06	4.42	
	SS	np.	r	0.93	0.86	0.79	0.53	
	IO .	Ter	t_{Vers}	6.177	5.091	14.994	6.647	
	sv (r		$t_{Tab} (\alpha = 0.05)$	1.961	1.970	1.970	1.970	
с	0kn		RMS (mm/month)	157	65	233	136	
	0 (5		RMS (%)	199%	50%	376%	315%	
	tA4	Prec	r	0.51	0.76	0.69	0.77	
	EF	I	E	t_{Vers}	14.273	2.620	12.115	10.182
				t_{Tab} ($\alpha = 0.05$)	1.963	1.970	1.970	1.970
			RMS (°C)	6.75	8.32	3.63	6.60	
	M4	np.	r	0.61	0.41	0.67	0.39	
	HA	Ter	t_{Vers}	4.455	14.101	4.934	8.189	
	EC		$t_{Tab} (\alpha = 0.05)$	1.961	1.970	1.970	1.970	
d	СM		RMS (mm/month)	129	114	144	132	
	s. G		RMS (%)	163%	88%	232%	307%	
	M	rec.	r	0.60	0.69	0.54	0.74	
	RC	Ч	t_{Vers}	9.371	2.430	7.282	7.779	
			$t_{Tab} \ (\alpha = 0.05)$	1.963	1.970	1.970	1.970	

Tabla 13 Comparison of the RCM-ECHAM4 with observations at the locations of meteorological stations.

`		Temp.	Prec. bias	
RCM	Domain	(absolute)	(absolute)	Source
HIRHAM	Europe	0.95	13	Jacob <i>et al.</i> , (2007)
HIRHAM25	Europe	0.85	15	Jacob et al., (2007)
HIRHAM12	Europe	0.90	17	Jacob et al., (2007)
CHRM	Europe	0.65	25	Jacob et al., (2007)
CLM	Europe	1.00	27	Jacob et al., (2007)
HadRM3H	Europe	1.35	16	Jacob <i>et al.</i> , (2007)
RegCM	Europe	0.75	19	Jacob <i>et al.</i> , (2007)
RACMO	Europe	1.20	16	Jacob <i>et al.</i> , (2007)
HIRHAM.no	Europe	1.05	19	Jacob <i>et al.</i> , (2007)
REMO	Europe	1.40	20	Jacob <i>et al.</i> , (2007)
RCAO	Europe	1.45	23	Jacob <i>et al.</i> , (2007)
RCAO22	Europe	1.30	26	Jacob <i>et al.</i> , (2007)
PROMES	Europe	0.85	14	Jacob <i>et al.</i> , (2007)
HadAM3H	Europe	0.85	17	Jacob <i>et al.</i> , (2007)
ARPEGE	Europe	0.60	19	Jacob <i>et al.</i> , (2007)
RIEMS	Asia	2.26	10	Fu et al., (2003)
CCAM	Asia	1.37	25	Fu et al., (2003)
DARLAM	Asia	0.85	25	Fu et al., (2003)
SNU RCM	Asia	3.13	29	Fu et al., (2003)
RegCM	Asia	3.08	16	Fu et al., (2003)
RegCM2	Asia	2.58	25	Fu et al., (2003)
RegCM3	Asia	2.85	22	Fu et al., (2003)
ALT MM5/LSM	Asia	2.99	39	Fu et al., (2003)
MRI	Asia	2.90	23	Fu et al., (2003)
RSM	S. America	-	2	Roads et al., (2003)
FSUNRSM	S. America	-	13	Roads et al., (2003)
RegCM2	S. America	-	15	Roads et al., (2003)
RCM	S. America	-	23	Roads et al., (2003)
PRECIS	Bangladesh	2.68	28	Nazrul et al., (2007)
PRECIS	India	3.63	54	Kumar et al., (2006)
PRECIS	S. Africa	0.96	26	Hudson and Jones (2002)
	mean	1.65	21	
Statistics	min	0.60	2.44	
Statistics	max	3.63	54	
	Std. dev.	0.95	9	

Tabla 14 RCM Temperature and Precipitation bias of 31 applications worldwide